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TEE
SURFACE FLUXES ARE THE 2nd SOURCE OF ERRORS IN THE GLOBAL AND REGIONAL NUMERICAL MODELS? (wane)
Several local measurements are needed to sample different land surfaces
= one eddy-covariance station to sample one land surface
EC
(eddy-covariance)
e e e = E : EC station
n sampled surfaces = n x 50k€
1 Carolyn Reynolds, Keith Williams, Ayrton Zadra: WGNE Systematic Error Survey Results o [ = = = ==
Summary, February 2019.
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SURFACE FLUXES ARE THE 2nd SOURCE OF ERRORS IN THE GLOBAL AND REGIONAL NUMERICAL MODELS?* (wene)

Several local measurements are needed to sample different land surfaces
= one eddy-covariance station to sample one land surface

EC

A
( ‘ ANN _
(Artificial Neural Network) : weather station

: EC station

n sampled surfaces = n x 50k€ n samled surfaces = x 4k€ + 50k€

Recent studies®® show that we can estimate those fluxes using standard weather stations (4k€) and ANN (trained with eddy-covariance
measurements as references)

1 Carolyn Reynolds, Keith Williams, Ayrton Zadra: WGNE Systematic Error Survey Results ) SoEEE
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Summary, February 2019.

2 Jason Kelley, Eric Pardyjak, Using Neural Networks To Estimate Site-Specific Crop N ENEEE

Evapotranspiration with Low-Cost Sensors, 23 February 2019. . . . .

3 M. Kumar, N. S. Raghuwanshi, R. Singh, Artificial neural networks approach in 3 B EEEn

evapotranspiration modeling: a review, 5 August 2010. . . . . . . .
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SURFACE FLUXES ARE THE 2nd SOURCE OF ERRORS IN THE GLOBAL AND REGIONAL NUMERICAL MODELS?* (wene)

Several local measurements are needed to sample different land surfaces
ANN
Neural Network) : weather station

: EC station

= one eddy-covariance station to sample one land surface

EC

n sampled surfaces = n x 50k€ n sampled surfaces = n x 4€ + 50k€

Recent studies®® show that we can estimate those fluxes using standard weather stations (4k€) and ANN (trained with eddy-covariance
measurements as references)
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Use of Artificial Neural Network (ANN) :
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INPUTS :
weather station
parameters
VRN § 5=

(py Py Py Py P5)

=>

/ Input  Layer of Neurons \

k a=f (Wp+b) j

(EC flux)
TARGETS :

® measured fluxes
(H and LE for sensible
and latent heat )

OUTPUTS :

:> estimated ﬂu?(es COMPARE
(H and LE for sensible and

latent heat )
(ANN flux)

ADJUST WEIGHTS
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ONE YEAR-LONG DATASET : VARIABILITY OF THE CONDITIONS (2m tower over a prairie)
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< definition of the input variables : e e L T

8% of the 12 days
- time (cyclical) an T
- airtemperature
- air humidity
- two horizontal wind components (u,v)
- shortwave income

EC
ANN
X data used for training

03 b W » T 2
| %4 N Ji Ky 4 R =0.969
06114 06115 06/19 " 06120 06124 06/25 W62y 06 RMSE = 13 W/m?

100 [ |l

H fluxes (W/m?)

-100
time

= definition of an optimised architecture (architecture/dataset co-dependency)

= definition of the rotation frequency (importance the variety of conditions encountered in the training set)

EC P
(eddy-covariance) "‘ ANN _
, i Neural Network) : weather station

: EC station

n sampled surfaces = n x 50k€ n samled surfaces = 4k€ + 50k€
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= definition of the input variables : Gomparig i?:;‘:‘f;gg;” flux
o . 200 T T T T :
- time (cyclical)

EC
ANN
X data used for training

- airtemperature
- air humidity

100 [ |l

- two horizontal wind components (u,v) 0 )

A R = 0.969
- shortwave income

RMSE = 13 W/m*

H fluxes (W/m?)

-100

time
= definition of an optimised architecture (architecture/dataset co-dependency)

= definition of the rotation frequency (importance the variety of conditions encountered in the training set)

Scenario 2

1 week for training 2 weeks for training 3 weeks for training
4 weeks for test 8 weeks for test 12 weeks for test
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1 week for training

Surface 1_ < .

———
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o g INPUTS: ~
weather station
( parameters #>
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Input  Layer of Neurons \
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\ a=f(Wp+b) /
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Perspectives
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TARGETS: >
® measured fluxes ¥
(H and LE for sensible /

N G and latent heat) »
~ — @ -
OUTPUTS :
:> estimated ﬂgxes COMPARE
(H and LE for sensible and
latent heat )
ADJUST WEIGHTS —
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1 week for training 1 week for training
4 weeks for test

Surface 1_ < .

Input  Layer of Neurons \
n a

——
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, INPUTS ~ OUTPUTS :
weather station estimated fluxes
( _parameters_ [:\,> :> (H and LE for sensible and
~ PR | 3 L latent heat )
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1 week for training 1 week for training

4 weeks for test

1 week for training

Surface 1_ < .

-———

~
TARGETS: >

® measured fluxes ¥
(H and LE for sensible /

N G and latent heat) »
b S — y — -
- ——— —
Pl IN}:’UTS: S OUTPUTS :
weather station estimated fluxes
—=> COMPARE
( _parameters_ [:\'> (H and LE for sensible and
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1 week for training 1 week for training 1 week for training
4 weeks for test

Surface 1, ~.

200

0

sensible heat flux (Wm-2)
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ROTATION FREQUENCY RESULTS

Test the influence of the different scenarios

—e—LE ] ]
.. ~ _._H i 1.
1 week for training S — std || Architecture tested here : in
4 weeks for test = 0. std || 1 hidden layer | 5 neurons ==
' 0
2 weeks for braini The 3rd scenario (3 weeks for [T
weeks for training o L]
8 weeks for test training) seems to be a good —
' compromise (sampling weather [
&—LE conditions/logistics) [ ]
| —e—H |
3 weeks for training e std | L .===
12 weeks for test ] std | ” EEEE
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Correlation

0.9

RMSE (Wm-2)

NETWORK TOPOGRAPHY RESULTS “emmm

Test the influence of the architecture

—8-LE (XN)

Scenario tested here : Scenario #2

5 neurons on 1 hidden-layer seems to

11 be enough here to properly estimate
fluxes

—8-LE (XN)
—8—H (XN)
Il std
st

The simpler, the better !
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Number of neuron XN
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ESTIMATED FLUXES S

Composite days for scenario 3, 5 neurons and 1 hidden-layer SAEEE
(monthly basis) 1T
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THE MOSAI CAMPAIGN :

MTO-maize : = frequency rotation : 3 weeks

G _ e EEEN
> y MTO-p;a_iries = architecture : 1THL | 5N
MT(gT'v,vheat 4% [ |
: . Deployment of the method
EG-60m 4 during the P20A campaign (april T
¢ ; & R 2023)
H
EC-maize EC-wheat EC-prairies
‘ ‘. Three sites instrumented with
tc S ciiucd 4 i standard weather stations:
Maize =
| | Prairie 0
EC-conifers Wheat
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THANKS !

Any questions ?

You can find me at:

mathilde.jome(@aero.obs-mip.fr




